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Parareal Algorithm

The Parareal Algorithm is a unique parallel-in-time algorithm, developed
by Lions, Maday, and Turinici in 2001 [3]. It uses sequential numerical
methods running at different time discretizations. The algorithm
converges to the result obtained by the sequential method, but can
achieve significant time savings [4].

Forward Euler Method [1] - Fast, but inaccurate
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The Hodgkin-Huxley model [2] Is a system of differential equations that
describe the membrane voltage of an axon as it fires the basic signal of
the nervous system: the action potential. When charge-carrying 1ons
such as sodium and potassium are enabled to cross a selectively
permeable membrane, the resulting current propagates along the length
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. RK4 Method [1] - Accurate, but more expensive = Achieves time savings by solving sections at the same time using
of the axon as a wave of altered vo_ltage. However_, the_de_gree towhich 1, s 4 k2K, + 2Ky + Ky Ledt forx=mnhV multiple CPUs.
the membrane Is permeable to sodium and potassium 1S fiseft gatec! b Y | |With ks, Forj=1,2,3,4 and x =m,n, h,V are caloulated as = Utilizes two temporal discretizations — one coarse, running in
voltage; therefore, voltage depends on permeability and permeability Kjx,= |0z, * (1 = (Xnow)) — B, (now)i for x =m,n, h.

sequential; and one fine, running in parallel, to solve the problem.
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= Predictor-corrector algorithm generates reasonable starting values for

I * —] forx =V. We have I; are calculated as:

depends on voltage.
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} parallel computing carried out on all time slices simultaneously.
Table of (x,,0);- Forx =m, n, h V.

= Converges to a solution over multiple iterations with lower overall

Hodgkin-Huxley Model
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