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Abstract. The signs of Fourier coefficients of certain eta quotients are determined by dissecting
expansions for theta functions and by applying a general dissection formula for certain classes of
quintuple products. A characterization is given for the coefficient sign patterns for

(qi; qi)∞
(qp; qp)∞

for integers i > 1 and primes p > 3. The sign analysis for this quotient addresses and extends
a conjecture of Bringmann et al. for the coefficients of (q2; q2)∞(q5; q5)−1

∞ . The sign distribution
for additional classes of eta quotients is considered. This addresses multiple conjectures posed by
Bringmann et al.

1. Introduction

The topic of vanishing coefficients in the series expansion of infinite q-products, and the period-
icity of the signs of the coefficients, goes back at least as far as the paper [30] by Richmond and
Szekeres.

Let the sequence {cn} be defined by the Ramanujan product

R(q) :=
(q2, q3; q5)∞
(q, q4; q5)∞

=:

∞∑
n=0

cnq
n,

where here and subsequently the standard notation (a1, . . . , aj ; q)∞ := (a1; q)∞ · · · (aj ; q)∞ is em-
ployed. In that paper [30], the authors used first the saddle point method and then the circle
method of Hardy and Ramanujan, as modified by Rademacher, to determine Hardy-Ramanujan-
Rademacher-type series for the cn, and were thus able to deduce, for n sufficiently large, that

(1.1) c5n > 0, c5n+1 > 0, c5n+2 < 0, c5n+3 < 0, c5n+4 < 0.

They also proved a similar result for the coefficients in the series expansion of 1/R(q).
Another of their results was to show that if the sequence {dn} is defined by

F (q) :=
(q3, q5; q8)∞
(q, q7; q8)∞

=:

∞∑
n=0

dnq
n,

then d4n+3 = 0, and that a similar vanishing coefficient result held for the coefficients in the series
expansion of 1/F (q).

Generalizations and extensions of those vanishing coefficient results to infinite families of infinite
products were subsequently given in papers by Andrews and Bressoud [4], Alladi and Gordon [1]
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and the third author of the present paper [25], where the method of proof in all cases employed a
special case of the Ramanujan 1ψ1 summation formula.

Andrews [3] gave a combinatorial proof of the inequalities at (1.1), but of greater relevance to
the methods in the present paper was the proof of Hirschhorn [20], who determined the 5-dissection
of R(q), i.e. expressed R(q) in the form

R(q) = R0(q
5) + qR1(q

5)− q7R2(q
5)− q3R5(q

5)− q14R4(q
5),

where the coefficients in the series expansion of each of the Ri(q
5), 0 ≤ i ≤ 4, are all nonnegative

and strictly positive eventually, making the sign periodicity stated at (1.1) obvious.
A new class of infinite q-products with the property that when the product is expanded as a

series in q, then the coefficients in one or more arithmetic progressions vanish, was introduced by
Hirschhorn in [21], where he showed that if the sequences {an} and {bn} are defined by

∞∑
n=0

anq
n := (−q,−q4; q5)∞(q, q9; q10)3∞,

∞∑
n=0

bnq
n := (−q2,−q3; q5)∞(q3, q7; q10)3∞.

Then a5n+2 = a5n+4 = b5n+1 = b5n+4 = 0. Similar results were subsequently proven by Tang [33],
Baruah and Kaur [5], the third author of the present paper [26] and with Zimmer [28]. Motivated by
the results and methods of Richmond and Szekeres [30] and Hirschhorn [21] and others, the topic of
vanishing coefficients in the series expansion of various kinds of infinite q-products is an active area
of research - see for example the papers of Channabasavayya and Dasappa [10], Channabasavayya,
Keerthana and Dasappa [11], Chern and Tang [12, 13, 14], Daniels [17], Dou and Xiao [18], Kaur
and Vanda [23, 39], Liu [24], Rajkhowa and Saikia [29], Somashekara and Thulasi [32] and Tang
[34, 36, 37, 38].

The topic of periodicity of the signs of the coefficients in the series expansion of infinite products
has seen less investigation, but a number of authors have obtained results by deriving m-dissections
of infinite products (for various integers m > 1) as Hirschhorn [20] did - see for example the papers
of Chern and Tang [13], Dou and Xiao [18], Tang [35] and Xia and Zhao [41].

Another important result was that of Andrews [2], where he proved the signs of the Fourier
coefficients of the infinite Borwein product

(1.2) Gp(q) =
(q; q)∞
(qp; qp)∞

=
∞∑
n=0

cp(n)q
n

are periodic modulo p. Andrews also remarked that Frank Garvan and Peter Borwein had a different
(unpublished) proof of this sign periodicity of Gp.

The function Gp was further studied in a recent paper of Schlosser and Zhou [31], where they

made some conjectures about the periodicity of the signs in the series expansion of Gδ
p for real δ in

certain intervals, and proved, for 0.227 ≤ δ ≤ 2.9999 and n ≥ 158, that the signs of the coefficients
cδ3 in the series expansion of Gδ

3 have period 3.
For reasons of compactness, write (qj ; qj)∞ =: fj , so that Gp = f1f

−1
p . The study of Gp has led

to the investigation of vanishing coefficients and periodicity of sign changes in other eta quotients

m∏
j=1

f
δj
j =:

∑
n≥0

C1δ12δ2 ···mδm (n)qn, δj ∈ Z,
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for example in the recent papers by Bringmann et. al. [6, 7], where we have employed their notation
for the coefficients. If we continue with their notation and define the vanishing set

S1δ12δ2 ···mδm := {n ∈ N : C1δ12δ2 ···mδm (n) = 0} ,

then an example of one of their results from [8] is that

S1−12103−14−4 = S172−23−1 = {n ∈ N : n ≡ 2 (mod 3) and ∃p ≡ 3 (mod 4), ordp(n) is odd} .

An example of one of their results on sign periodicity from [7] is the following:
The signs of the sequence {C14224−2(n)}n≥1 have period 8. In particular,

C14224−2(n)


> 0 if n ≡ 0, 3, 7 (mod 8),

< 0 if n ≡ 1, 4, 5 (mod 8),

= 0 if n ≡ 2 (mod 4).

In the paper [9] the authors prove some additional results, including the following for period 9:

C193−5(n) =

{
> 0 if n ≡ 0, 2, 5, 6, 8 (mod 9),

< 0 if n ≡ 1, 3, 4, 7 (mod 9)

and make a large number of conjectures about the sign periodicity of the coefficients in the series
expansion of particular eta quotients; for example, they conjectured [9, Table 1] that

(1.3) C215−1


> 0 if n ≡ 0 (mod 5),

< 0 if n ≡ 2, 4 (mod 5),

= 0 otherwise.

Inspired by Bringmann et al.’s works and their conjectures, one of the primary goals of this paper
is to prove the coefficient sign pattern claimed in the next theorem.

Theorem 1.1. Let p > 3 be a prime, and let i > 1 be an integer not divisible by p. Write

(qi; qi)∞
(qp; qp)∞

=

∞∑
n=0

anq
n.(1.4)

For 0 ≤ r ≤ p− 1, when p ≡ 1 (mod 3), let

L(r) =


6r2 + r if r ≤ 4p−1

12 ,

6r2 + r − 8pr + 8p2−2p
3 if 4p−1

12 < r ≤ 10p−1
12 ,

6r2 + r − 12pr + (6p2 − p) if r > 10p−1
12 ,

and when p ≡ −1 (mod 3), let

L(r) =


6r2 + r if r ≤ 2p−1

12 ,

6r2 + r − 4pr + 2p2−p
3 if 2p−1

12 < r ≤ 8p−1
12 ,

6r2 + r − 12pr + (6p2 − p) if r > 8p−1
12 .

Define

N = N(p, i) = max

(
p−1⋃
s=0

min(iL(r) : iL(r) ≡ s (mod p), 0 ≤ r ≤ p− 1)

)
− p.

Then for n > N ,
3



(1) if p ≡ 1 (mod 3),

an


> 0, if n ≡ i(6r2 + r) (mod p) with r ≤ 4p−1

12 or r > 10p−1
12 ,

< 0, if n ≡ i(6r2 + r) (mod p) with 4p−1
12 < r ≤ 10p−1

12 ,

= 0, if n ̸= i(6r2 + r) (mod p),

(2) if p ≡ −1 (mod 3), then

an


> 0, if n ≡ i(6r2 + r) (mod p) with r ≤ 2p−1

12 or r > 8p−1
12 ,

< 0, if n ≡ i(6r2 + r) (mod p) with 2p−1
12 < r ≤ 8p−1

12 ,

= 0, if n ̸= i(6r2 + r) (mod p).

Remark 1. For the case of i being divisible by p, it is straightforward to show that

an

{
> 0 if p|n,
= 0 otherwise.

We leave the details to the reader.

Specializing p = 5 and i = 2 in Theorem 1.1 yields (1.3) and thus,

Corollary 1.1. Write

(q2; q2)∞
(q5; q5)∞

=

∞∑
n=0

anq
n.

Then

an


> 0 if n ≡ 0 (mod 5),

< 0 if n ≡ 2, 4 (mod 5),

= 0 otherwise.

In general, as is indicated in Theorem 1.1, the sign-periodicity of the coefficients an of (qi;qi)∞
(qp;qp)∞

is not universal for any n. However, the lower bound N on n given in the theorem is a sharp one.
In the following table, we display all the examples for 2 ≤ i ≤ 4 and 5 ≤ p ≤ 13 that follow from
the theorem. In a cell corresponding to a pair (p, i), the upper row represents the sign-periodicity
of an in order with n ≡ 0, . . . , p− 1 (mod p), and the lower row gives the largest subset of n’s for
which the sign-periodicity holds.

p
i 2 3 4

5
+0− 0− +− 0− 0 +00−−
n ≥ 0 n ≥ 2 n ≥ 4

7
+0−+− 00 + + 0− 00− +− 00− 0+

n ≥ 4 n ≥ 9 n ≥ 14

11
+0−+− 000− 0+ +− 0−+0− 000+ +000−−+ 0−+0

n ≥ 20 n ≥ 35 n ≥ 50

13
++−0−+0000 +−0 + ++− 00− 0 + 0− 00 +0 + 0− 00 +−−+00

n ≥ 32 n ≥ 54 n ≥ 76

In addition to Theorem 1.1, we also formulate the sign-periodicity of the coefficients of multiple
particular infinite products in the following theorem.
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Theorem 1.2. (1) For p ≥ 3 a prime, write

(q2; q2)2∞
(q; q)∞(qp; qp)∞

=

∞∑
n=0

anq
n.

Let

N = N(p) = max

(
p−1⋃
s=0

min

(
r(r + 1)

2
:
r(r + 1)

2
≡ s (mod p), 0 ≤ r ≤ p− 1

))
− p.

Then for n > N ,

an

{
> 0 if n ≡ r(r+1)

2 (mod p) for some r ∈ Z/pZ,
= 0 otherwise.

(2) For p = 1 or an odd prime, write

(q; q)2∞
(q2; q2)∞(q4p; q4p)∞

=

∞∑
n=0

anq
n.

Let

N = N(p) = max

(
4p−1⋃
s=0

min
(
r2 : r2 ≡ s (mod p), 0 ≤ r ≤ 4p− 1

))
− 4p.

Then for n > N ,

an


< 0 if n ≡ 4t2 + 4t+ 1 (mod 4p) for some t ∈ Z/pZ,
> 0 if n ≡ 4t2 (mod 4p) for some t ∈ Z/pZ,
= 0 otherwise, i.e., n ≡ 2, 3 (mod 4) or

(
n
p

)
= −1.

(3) Write

(q; q)3∞
(q3; q3)2∞

=
∞∑
n=0

anq
n.

Then

an


> 0 if n ≡ 0 (mod 3),

< 0 if n ≡ 1 (mod 3),

= 0 otherwise.

(4) Write

(q; q)2∞
(q2; q2)∞(q3; q3)2∞

=

∞∑
n=0

anq
n

Then

an


> 0 if n ≡ 0 (mod 3),

< 0 if n ≡ 1 (mod 3),

= 0 otherwise.

(5) Write

(q; q)4∞
(q2; q2)2∞(q4; q4)∞

=
∞∑
n=0

anq
n.
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Then

an


> 0 if n ≡ 0, 2 (mod 4),

< 0 if n ≡ 1 (mod 4),

= 0 otherwise.

(6) Write

(q2; q2)10∞
(q; q)4∞(q4; q4)5∞

=

∞∑
n=0

anq
n.

Then

an

{
> 0 if n ≡ 0, 1, 2 (mod 4),

= 0 otherwise.

(7) Write

(q; q)2∞
(q5; q5)3∞

=
∞∑
n=0

anq
n.

Then

an

{
> 0 if n ≡ 0, 3, 4 (mod 5),

< 0 otherwise.

(8) Write

(q; q)9

(q3; q3)9
=

∞∑
n=0

anq
n.

Then

an


> 0 if n ≡ 0, 2, 5, 8 (mod 9),

< 0 if n ≡ 1, 3, 4, 7 (mod 9),

= 0 otherwise.

(9) Let i ≥ 11 be an integer, and write

(q; q)9

(q3; q3)i
=

∞∑
n=0

anq
n.

Then
(a) when i = 11,

an

{
> 0 if n ≡ 0, 2, 5, 8 (mod 9),

< 0 otherwise,

(b) when i = 12,

an


> 0 if n ≡ 0, 2, 5, 8 (mod 9),

< 0 if n ≡ 1, 4, 7 (mod 9),

= 0 otherwise,

(c) when i > 12,

an

{
> 0 if n ≡ 0, 2 (mod 3),

< 0 otherwise.

Remark 2. A number of particular conjectures posed in [9, Table 1] are covered by Theorem 1.2:

• When p = 5, part (1) together with checking the first p(p+1)
2 = 15 terms proves the case

corresponding to 5/++0 + 0.
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• When p = 1, part (2) proves the case corresponding to 4/+−00.
• Parts (3) and (4) respectively prove the first- and second-to-the-right case corresponding to
3/+ 0−.

• Part (5) proves the case corresponding to 4/+−+ 0.
• Part (6) proves the upper case in the first cell corresponding to 4/+++ 0.
• Part (7) proves the middle case in the second cell corresponding to 5/+−−++.
• Part (8) proves the case corresponding to 9/+−+−−+0−+.

2. Nuts and Bolts

In this section, we shall state and prove some preliminary results that will be useful in proving
Theorems 1.1 and 1.2. We start with the following technical lemma that will be used frequently
throughout the work. The proof of the lemma is straightforward and left to the reader.

Lemma 2.1. (1) For |q| < 1, and any two subsets S1, S2 of Z>0 such that S1 ⊂ S2, one has∏
n∈S1

(1− qn)∏
n∈S2

(1− qn)
=

1∏
n∈S2−S1

(1− qn)
.

Moreover, if one writes

1∏
n∈S2−S1

(1− qn)
= 1 +

∞∑
n=1

anq
n,

then an ≥ 0 for any n ≥ 1.
(2) For an integer m ≥ 2 and any series 1 +

∑∞
n=1 bnq

mn with bn ≥ 0, write(
1 +

∞∑
n=1

bnq
mn

)
1

1− qm
=

∞∑
n=0

anq
mn.

Then an ≥ 1 for any n ≥ 0.

The remainder of the present section is split into three subsections in accordance with the nature
of the preliminary results to be displayed.

2.1. Dissection formulas. The following m-dissection formula can be found in [22].

Theorem 2.1. For M ≥ 3, 1 ≤ j < M/2, and m ≡ ±1 (mod 3), one has that

(qj , qM−j , qM ; qM )∞(qM−2j , qM+2j ; q2M )∞(2.1)

=
m−1∑
r=0

(−1)s(r)qL(r)(qt1(r), qm
2M−t1(r), qm

2M ; qm
2M )∞(qt2(r), q2m

2M−t2(r); q2m
2M )∞,

where

t1(r) = mM(m± (6r − 1))/6± jm (mod m2M),

t2(r) = m2M + 2jm±M(m± (6r − 1))m/3 (mod 2m2M),

L(r) = 7m2M

24
+

1

2
t1(r)

(
t1(r)

m2M
− 1

)
+

1

2
t2(r)

(
t2(r)

2m2M
− 1

)
−
(
7M

24
+

1

2
j

(
j

M
− 1

)
+

1

2
(M − 2j)

(
M − 2j

2M
− 1

))
,
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and if m ≡ 1 (mod 3), then

(2.2) s(r) =


0, if r ≤ (2m+1)M−6j

6M ,

1, if (2m+1)M−6j
6M < r ≤ (5m+1)M−6j

6M ,

2, if r > (5m+1)M−6j
6M ,

and if m ≡ −1 (mod 3), then

(2.3) s(r) =


0, if r ≤ (m+1)M−6j

6M ,

1, if (m+1)M−6j
6M < r ≤ (4m+1)M−6j

6M ,

2, if r > (4m+1)M−6j
6M .

An immediate implication of Theorem 2.1 is the following explicit dissection formula for (q; q)∞.

Corollary 2.1. For an m ≡ ±1 (mod 3), one has that

(q; q)∞ =
m−1∑
r=0

(−1)s(r)qL(r)(qt1(r), q4m
2−t1(r), q4m

2
; q4m

2
)∞(qt2(r), q8m

2−t2(r); q8m
2
)∞,

where if m ≡ 1 (mod 3),

t1(r) =

{
2m2+m

3 + 4mr, if r < 10m−1
12 ,

−10m2+m
3 + 4mr, if r > 10m−1

12 ,

t2(r) =

{
16m2+2m

3 + 8mr, if r < 4m−1
12 ,

−8m2+2m
3 + 8mr, if r > 4m−1

12 ,

L(r) =


6r2 + r if r ≤ 4m−1

12 ,

6r2 + r − 8mr + 8m2−2m
3 if 4m−1

12 < r ≤ 10m−1
12 ,

6r2 + r − 12mr + (6m2 −m) if r > 10m−1
12 ,

s(r) =


0, if r ≤ 4m−1

12 ,

1, if 4m−1
12 < r ≤ 10m−1

12 ,

2, if r > 10m−1
12 ,

and if m ≡ −1 (mod 3),

t1(r) =

{
2m2−m

3 − 4mr, if r < 2m−1
12 ,

14m2−m
3 − 4mr, if r > 2m−1

12 ,

t2(r) =

{
8m2+2m

3 + 8mr, if r < 8m−1
12 ,

−16m2+2m
3 + 8mr, if r > 8m−1

12 ,

L(r) =


6r2 + r if r ≤ 2m−1

12 ,

6r2 + r − 4mr + 2m2−m
3 if 2m−1

12 < r ≤ 8m−1
12 ,

6r2 + r − 12mr + (6m2 −m) if r > 8m−1
12 ,

s(r) =


0, if r ≤ 2m−1

12 ,

1, if 2m−1
12 < r ≤ 8m−1

12 ,

2, if r > 8m−1
12 .

Proof. This follows from taking M = 4, j = 1 in Theorem 2.1 and noticing that

(q; q)∞ = (q1, q3, q4; q4)∞(q2, q6; q8)∞.
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In this case, when m ≡ 1 (mod 3)

t1(r) ≡
2m2 +m

3
+ 4mr (mod 4m2),

t2(r) ≡
16m2 + 2m

3
+ 8mr (mod 8m2).

One finds that t1(
10m−1

12 ) = 4m2 < t1(m− 1) < 8m2 and t2(
4m−1
12 ) = 8m2 < t2(m− 1) < 16m2. So,

t1(r) =

{
2m2+m

3 + 4mr, if r < 10m−1
12 ,

−10m2+m
3 + 4mr, if r > 10m−1

12 ,

t2(r) =

{
16m2+2m

3 + 8mr, if r < 4m−1
12 ,

−8m2+2m
3 + 8mr, if r > 4m−1

12 .

Also, when m ≡ −1 (mod 3),

t1(r) ≡
2m2 −m

3
− 4mr (mod 4m2),

t2(r) ≡
8m2 + 2m

3
+ 8mr (mod 8m2),

Similarly, −4m2 < t1(m − 1) < t1(
2m−1
12 ) = 0 < t1(1) < 4m2 and t2(

8m−1
12 ) = 8m2 < t2(m − 1) <

16m2. Therefore,

t1(r) =

{
2m2−m

3 − 4mr, if r < 2m−1
12 ,

14m2+m
3 − 4mr, if r > 2m−1

12 ,

t2(r) =

{
8m2+2m

3 + 8mr, if r < 8m−1
12 ,

−16m2+2m
3 + 8mr, if r > 8m−1

12 .

As a consequence, L(r) may be formulated as stated. □

Note that the m-dissection formulas given above hold only for m coprime to 3. We conclude the
present subsection with the next theorem concerning the 3-dissection of the infinite products (q; q)∞
and (q; q)3∞.

Theorem 2.2. The following identities hold.

(q; q)∞ =
(q3; q3)∞

(q3, q6, q9, q18, q21, q24, q27; q27)∞
− q

(q3; q3)∞
(q3, q9, q12, q15, q18, q24, q27; q27)∞

− q2
(q3; q3)∞

(q6, q9, q12, q15, q18, q21, q27; q27)∞
,

(q; q)3∞ = (q3; q3)∞

(
1 + 6

∞∑
n=1

q3n
1− q3n

1− q9n

)
− 3q(q9; q9)3∞.

Proof. Take m = 3 in [27, (2.1) and Theorem 4.1], respectively. □
9



2.2. The Borwein cubic theta functions. Define

a(q) :=
∞∑

m,n=−∞
qm

2+mn+n2
, b(q) :=

∞∑
m,n=−∞

e2πi(m−n)/3qm
2+mn+n2

,

c(q) :=

∞∑
m,n=−∞

q(m+ 1
3
)2+(m+ 1

3
)(n+ 1

3
)+(n+ 1

3
)2 .

These functions are called the Borwein cubic theta functions.
Clearly the coefficients of a(q) are all non-negative. Moreover, the functions a(q), b(q), c(q) satisfy

the following identities [16, Chapter 3]:

(2.4) b(q) =
(q; q)3∞
(q3; q3)∞

= a(q3)− c(q3), c(q) = 3q
1
3
(q3; q3)3∞
(q; q)∞

, a3(q) = b3(q) + c3(q).

We shall make use of (2.4) to establish the following lemma that will be useful in proving items (8)
and (9) of Theorem 1.2.

Lemma 2.2. Let i > 3 be an integer, and write

(q; q)9∞
(q3; q3)i∞

=
∞∑
n=0

anq
n.

Then

an

{
> 0 if n ≡ 2 (mod 3),

< 0 if n ≡ 1 (mod 3).

Proof. Note by [16, Theorem 3.15] that

(q3; q3)3∞
(q; q)∞

=
∑

m1+m2+m3=0

q3(m
2
1+m2

2+m2
3)/2+m1+2m2+3m3 ,

so the coefficients of (q3;q3)3∞
(q;q)∞

are all non-negative. Then if one writes for any positive integer j,(
(q3; q3)3∞
(q; q)∞

)j
1

(q3; q3)∞
=

∞∑
n=0

cnq
3n,

by Lemma 2.1 one can find that cn ≥ 1. From (2.4),

(q; q)9

(q3; q3)i
=

1

(q3; q3)i−3

(
(q; q)3∞
(q3; q3)∞

)3

=
1

(q3; q3)i−3

(
a(q3)− 3q

(q9; q9)3∞
(q3; q3)∞

)3

=
1

(q3; q3)i−3

(
a3(q3)− 9qa2(q3)

(q9; q9)3∞
(q3; q3)∞

+ 27q2a(q3)

(
(q9; q9)3∞
(q3; q3)∞

)2

− 27q3
(
(q9; q9)3∞
(q3; q3)∞

)3
)
,(2.5)

and thus,

∞∑
n=0

a3n+1q
n = −a2(q)(q

3; q3)3∞
(q; q)∞

× 1

(q3; q3)i−3
∞

and
∞∑
n=0

a3n+2q
n = 27a(q)

(
(q3; q3)3∞
(q; q)∞

)2
1

(q3; q3)i−3
∞

.

The desired conclusion follows from these dissection formulas together with (2.5) and the non-
negativity of the coefficients of a(q). □
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2.3. Infinite product as a theta series. As the dissection formula given in Theorem 2.1 might
not be applicable to the cases considered in Theorem 1.2, one of the tricks that we will employ in
the treatment of those cases is to factor out an appropriate component that can be expressed as
a theta series and m-dissect the theta series by analyzing its associated lattice points. This can
lead us to identify the sign-periodicity of the coefficients we are concerned with. For use in our
arguments, we list all the identities linking an infinite product to a theta series.

Theorem 2.3. The following identities hold.

(q; q)2∞
(q2; q2)∞

=
∞∑

n=−∞
(−1)nqn

2
,(2.6)

(q2; q2)2∞
(q; q)∞

=
∞∑
n=0

qn(n+1)/2,(2.7)

(q2; q2)5∞
(q; q)2∞(q4; q4)2∞

=
∞∑

n=−∞
qn

2
,(2.8)

(q; q)2∞(q6; q6)∞
(q2; q2)∞(q3; q3)∞

=
1

2

∞∑
n=−∞

a(n)q
n2−1

8 ,(2.9)

where a(n) = 0, 1, 0,−2, 0, 1 in order with n ≡ 0, 1, 2, 3, 4, 5 (mod 6).

Proof. See, e.g., [15, Theorem 5.9.4] and the references wherein. □

3. Proof of Theorem 1.1

This section is devoted to proving Theorem 1.1. As both cases considered in the theorem are
parallel to one another, we only detail the proof of the case of p ≡ 1 (mod 3) whose conclusion is
now restated in Theorem 3.1 for the convenience of the reader.

Theorem 3.1. Let p ≡ 1 (mod 3) be a prime, and let i > 1 be an integer not divisible by p. Write

(qi; qi)∞
(qp; qp)∞

=

∞∑
n=0

anq
n.(3.1)

For 0 ≤ r ≤ p− 1, let

L(r) =


6r2 + r if r ≤ 4p−1

12 ,

6r2 + r − 8pr + 8p2−2p
3 if 4p−1

12 < r ≤ 10p−1
12 ,

6r2 + r − 12pr + (6p2 − p) if r > 10p−1
12 .

Define

N = N(p, i) = max

(
p−1⋃
s=0

min(iL(r) : iL(r) ≡ s (mod p), 0 ≤ r ≤ p− 1)

)
− p.

Then for n > N ,

an


> 0, if n ≡ i(6r2 + r) (mod p) with r ≤ 4p−1

12 or r > 10p−1
12 ,

< 0, if n ≡ i(6r2 + r) (mod p) with 4p−1
12 < r ≤ 10p−1

12 ,

= 0, if n ̸= i(6r2 + r) (mod p).
11



Proof. First of all, following the notation in Corollary 2.1 we prove that if 6r2 + r ≡ 6r′2 + r′ ≡ t
(mod p), then (−1)s(r) = (−1)s(r

′). Since p = 3k ± 1, then if k = 2t + 1, p = 6t + 3 ± 1 is even;
however, p is prime. So one can just assume p = 6t± 1. When p = 6t+ 1 and r, r′ ∈ Z/pZ,

6r2 + r ≡ 6r′2 + r′ (mod p) ⇔ (6r + 6r′ + 1)(r − r′) ≡ 0 (mod p).

When p|(r − r′), it is done. If p | (6r + 6r′ + 1), then

r + r′ ≡ p− 1

6
≡ 14p− 2

12
(mod p).

Thus, one can conclude that if r < 4p−1
12 , then r′ > 10p−1

12 , and similarly if r > 4p−1
12 , then r′ < 10p−1

12 .

So (−1)s(r) = (−1)s(r
′). Similarly, when p = 6t− 1 and r, r′ ∈ Z/pZ, one can find that

r + r′ ≡ 3t− 1

3
= t− 3−1 ≡ 5t− 1 (mod p),

as (−3)−1 ≡ 4t − 1 (mod p), and thus, if r < 2m−1
12 = 4t−1

4 ,then r′ > 8m−1
12 = 16t−3

4 and if

r > 2m−1
12 ,then r′ < 8m−1

12 . So (−1)s(r) = (−1)s(r
′).

Recall by Corollary 2.1, one has that

(q; q)∞ =

p−1∑
r=0

(−1)s(r)qL(r)(qt1(r), q4p
2−t1(r), q4p

2
; q4p

2
)∞(qt2(r), q8p

2−t2(r); q8p
2
)∞,

where when p ≡ 1 (mod 3),

t1(r) =

{
2p2+p

3 + 4pr, if r < 10p−1
12 ,

−10p2+p
3 + 4pr, if r > 10p−1

12 .

t2(r) =

{
16p2+2p

3 + 8pr, if r < 4p−1
12 ,

−8p2+2p
3 + 8pr, if r > 4p−1

12 .

L(r) =


6r2 + r if r ≤ 4p−1

12 ,

6r2 + r − 8pr + 8p2−2p
3 if 4p−1

12 < r ≤ 10p−1
12 ,

6r2 + r − 12pr + (6p2 − p) if r > 10p−1
12 .

s(r) =


0, if r ≤ 4p−1

12 ,

1, if 4p−1
12 < r ≤ 10p−1

12 ,

2, if r > 10p−1
12 .

Note that if t1(r) = t2(r), then one must have
2p2+p

3 + 4pr = 16p2+2p
3 + 8pr, if r < 4p−1

12 ,
2p2+p

3 + 4pr = −8p2+2p
3 + 8pr, if 4p−1

12 < r < 10p−1
12 ,

−10p2+p
3 + 4pr = −8p2+2p

3 + 8pr, if r > 10p−1
12 .

It is straightforward to check that, subject to the assumptions on r, all three of the equations
have no solutions. So, t1(r) ̸= t2(r). Also, it is routine to check that the quantities t1(r), 4p

2 −
t1(r), 4p

2, 4p2 + t1(r), 8p
2 − t1(r), 8p

2, t2(r), 8p
2 − t2(r) are pairwise distinct and are all multiples

of p. Therefore, one can find that

(qi; qi)∞
(qp; qp)∞

=

p−1∑
r=0

(−1)s(r)qiL(r)
(qit1(r), qi(4p

2−t1(r)), qi4p
2
; qi4p

2
)∞(qit2(r), qi(8p

2−t2(r)); qi8p
2
)∞

(qp; qp)∞
12



=
∑

r≤ 4p−1
12

qiL(r)
(qit1(r), qi(4p

2−t1(r)), qi4p
2
; qi4p

2
)∞(qit2(r), qi(8p

2−t2(r)); qi8p
2
)∞

(qp; qp)∞

−
∑

4p−1
12

<r≤ 10p−1
12

qiL(r)
(qit1(r), qi(4p

2−t1(r)), qi4p
2
; qi4p

2
)∞(qit2(r), qi(8p

2−t2(r)); qi8p
2
)∞

(qp; qp)∞

+
∑

r> 10p−1
12

qiL(r)
(qit1(r), qi(4p

2−t1(r)), qi4p
2
; qi4p

2
)∞(qit2(r), qi(8p

2−t2(r)); qi8p
2
)∞

(qp; qp)∞
.

Since the infinite products in the numerator have no factor of (1−qp), then by the definition of L(r)
and Lemma 2.1 one can deduce that an = 0 if n ̸≡ i(6r2 + r) (mod p), and when n ≡ i(6r2 + r)
(mod p) and n ≥ iL(r),

an

{
> 0, if n ≡ i(6r2 + r) (mod p) with r ≤ 4p−1

12 or r > 10p−1
12 ,

< 0, if n ≡ i(6r2 + r) (mod p) with 4p−1
12 < r ≤ 10p−1

12 .

It is clear that for 0 ≤ s ≤ p− 1 and ms := min(iL(r) : iL(r) ≡ s (mod p), 0 ≤ r ≤ p− 1), if the
sign-pattern holds for ams , then it holds for any n in the arithmetic progression ms + kp for k ≥ 0.
Therefore, for N = max(ms : 0 ≤ s ≤ p− 1)− p and n > N , all the minimal indices such that the
sign pattern holds have been ranged over, and hence, the sign pattern holds for any n > N .

□

4. Proof of Theorem 1.2

In this section, we give the proof of Theorem 1.2. This will be delivered case by case.

Proof of Theorem 1.2 (1). Start with the identity (2.7)

(q2; q2)2∞
(q; q)∞

=
∞∑
n=0

qn(n+1)/2 :=
∞∑
n=0

bnq
n.

Notice that for n ̸≡ r(r+1)
2 for any r ∈ Z/pZ, the coefficient bn = 0, and br(r+1)/2 = 1, and thus, by

Lemma 2.1 and the same reasoning used at the end of the proof of Theorem 1.1 for

(q2; q2)2∞
(q; q)∞(qp; qp)∞

=
∞∑
n=0

anq
n,

one can conclude that an ≥ 1 when n > N and n ≡ r(r+1)
2 (mod p) for some r ∈ Z/pZ.

□

Proof of Theorem 1.2 (2). Recall by (2.6) that

(q; q)2∞
(q2; q2)∞

=

∞∑
n=−∞

(−1)nqn
2
:=

∞∑
n=0

bnq
n.

Then it clear that bn = 0 when n ̸≡ t2 (mod 4p), equivalently, n ≡ 2, 3 (mod 4) or
(
n
p

)
= −1, and

bn =

{
≤ 0 if n ≡ 4t2 + 4t+ 1 (mod 4p),

≥ 0 if n ≡ 4t2 (mod 4p),

13



for some t ∈ Z/pZ. In particular, for 0 ≤ t ≤ p − 1, b(2t+1)2 = −1 < 0 and b(2t)2 = 1 > 0. So,

dividing both sides by (q4p; q4p)∞ and applying Lemma 2.1 and the same reasoning used in the
proof of Theorem 1.1, one can deduce that for n > N ,

an =

{
< 0 if n ≡ 4t2 + 4t+ 1 (mod 4p),

> 0 if n ≡ 4t2 (mod 4p),

for some t ∈ Z/pZ. □

Proof of Theorem 1.2 (3). By Theorem 2.2 one has

(q; q)3∞
(q3; q3)2∞

=
1

(q3; q3)∞

(
1 + 6

∞∑
n=1

q3n
1− q3n

1− q9n

)
− 3q

(q9; q9)3∞
(q3; q3)∞

× 1

(q3; q3)∞

=

(
1

(q3; q3)∞
+ 6

∞∑
n=1

q3n
1− q3n

(1− q9n)(q3; q3)∞

)
− 3q

(q9; q9)3∞
(q3; q3)∞

× 1

(q3; q3)∞
.

Clearly, the coefficient an = 0 for n ≡ 2 (mod 3), and by the first component on the right hand side
together with Lemma 2.1, it can be found that the coefficient an ≥ 1 for n ≡ 0 (mod 3). Finally,
recall by the beginning of the proof of Lemma 2.2 that

(q3; q3)3∞
(q; q)∞

= 1 +O(q)

has non-negative coefficients, and thus, so does

(q9; q9)3∞
(q3; q3)∞

= 1 +O(q3).

This together with Lemma 2.1 implies that an < 0 for n ≡ 1 (mod 3) and completes the proof.
□

Proof of Theorem 1.2 (4). By (2.9), one has

(q; q)2∞(q6; q6)∞
(q2; q2)∞(q3; q3)∞

=
∞∑
k=0

q((6k+1)2−1)/8 − 2
∞∑
k=0

q((6k+3)2−1)/8 +
∞∑
k=0

q((6k+5)2−1)/8

=
∞∑
k=0

q
3k(3k+1)

2 − 2
∞∑
k=0

q
(3k+1)(3k+2)

2 +
∞∑
k=0

q
(3k+2)(3k+3)

2

=
∞∑
n=0

cnq
3n − 2q

∞∑
n=0

bnq
3n,

where clearly cn, bn ≥ 0 for any n, and c0 = b0 = 1. So, divide both sides by (q6; q6)∞(q3; q3)∞ and
notice by Lemma 2.1 that if

1

(q6; q6)∞(q3; q3)∞
=

∞∑
n=0

dnq
3n,

then dn ≥ 1. This together with the signs of cn, bn and the fact c0 = b0 = 1 implies the desired
conclusion. □

Proof of Theorem 1.2 (5). Start with squaring (2.6) to get

(q, q)4∞
(q2; q2)2∞

=
∞∑

n=−∞

∞∑
m=−∞

(−1)n+mqn
2+m2

=
∞∑
n=0

bnq
n.
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Clearly, bn = 0 when n ≡ 3 (mod 4), which cannot be written as a sum of two squares. Also notice
that if n21 +m2

1 ≡ n22 +m2
2 (mod 4), then (n1 +n2)(n1 −n2) ≡ (m1 +m2)(m1 −m2) (mod 2), and

thus, n1 +m1 ≡ n2 +m2 (mod 2). So one can deduce that

bn

{
≥ 0 if n ≡ 0, 2 (mod 4),

≤ 0 if n ≡ 1 (mod 4).

Finally, since b0 = b1 = b2 = 1, then dividing both sides by (q4; q4)∞ and invoking Lemma 2.1 yield
the desired conclusion. □

Proof of Theorem 1.2 (6). Squaring the identity (2.8)

(q2; q2)5∞
(q; q)2∞(q4; q4)2∞

=
∞∑

n=−∞
qn

2
,

one has that
(q2; q2)10∞

(q; q)4∞(q4; q4)4∞
=

∞∑
n=−∞

∞∑
m=−∞

qm
2+n2

=

∞∑
n=0

bnq
n.

Clearly, since m2 + n2 ≡ 0, 1, 2 (mod 4), then bn = 0 if n ≡ 3 (mod 4), and bn ≥ 0 for n ≡ 0, 1, 2
(mod 4). In particular, b0 = 1, b1 = 2, b2 = 1. So, after dividing both sides by (q4; q4)∞, the
conclusion follows from these together with Lemma 2.1. □

Proof of Theorem 1.2 (7). Recall the following classical identity of Ramanujan [19]:

(q; q)∞ = (q25; q25)∞

[
(q10, q15; q25)∞
(q5, q20; q25)∞

− q − q2
(q5, q20; q25)∞
(q10, q15; q25)∞

]
.

Squaring both sides gives that

(q; q)2∞ = (q25; q25)2∞

[(
(q10, q15; q25)∞
(q5, q20; q25)∞

)2

− 2q
(q10, q15; q25)∞
(q5, q20; q25)∞

− q2

+ 2q3
(q5, q20; q25)∞
(q10, q15; q25)∞

+q4
(

(q5, q20; q25)∞
(q10, q15; q25)∞

)2
]
.

Note by Lemma 2.1 that after dividing both sides by (q5; q5)3∞, each of the resulting infinite-product
components is of the form∏

n∈S

1

(1− q5n)2
× 1

(q5; q5)∞
=

(
1 +

∞∑
n=1

cnq
5n

)
1

(q5; q5)∞
=

∞∑
n=0

Anq
5n,

with cn ≥ 0 for any n in some subset S of Z>0, and therefore, An ≥ 1 for any n. From this the
desired conclusion follows. □

Proof of Theorem 1.2 (8). Upon Lemma 2.2, it suffices to prove that

a3n


> 0 if n ≡ 0 (mod 3),

< 0 if n ≡ 1 (mod 3),

= 0 if n ≡ 2 (mod 3).

Notice by the proof of Lemma 2.2 that

(q; q)9

(q3; q3)9
=
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1

(q3; q3)6

(
a3(q3)− 9qa2(q3)

(q9; q9)3∞
(q3; q3)∞

+ 27q2a(q3)

(
(q9; q9)3∞
(q3; q3)∞

)2

− 27q3
(
(q9; q9)3∞
(q3; q3)∞

)3
)
,

and thus,
∞∑
n=0

a3nq
n =

a3(q)

(q; q)6
− 27q

(q3; q3)9∞
(q; q)9∞

.

Making use of the identities given in (2.4) and Theorem 2.2, it is straightforward to deduce that

∞∑
n=0

a3nq
n =

(q; q)3∞
(q3; q3)3∞

=
1

(q3; q3)2∞

(
1 + 6

∞∑
n=1

q3n
1− q3n

1− q9n

)
− 3q

(q9; q9)3∞
(q3; q3)3∞

.

Finally, from this together with Lemma 2.1 the desired sign-pattern of period 3 for a3n follows. □

Proof of Theorem 1.2 (9). By Lemma 2.2 one already has

an

{
> 0 if n ≡ 2 (mod 3), i.e., n ≡ 2, 5, 8 (mod 9),

< 0 if n ≡ 1 (mod 3), i.e., n ≡ 1, 4, 7 (mod 9).

It remains to treat the case n ≡ 0 (mod 3). To this end, by the proof of Lemma 2.2 and making
use of (2.4), one can first deduce

(q; q)9∞
(q3; q3)i∞

=
(q3; q3)12−i

∞
(q9; q9)3∞

− 9q
a(q3)2

(q3; q3)i−3
∞

(
(q9; q9)3∞
(q3; q3)∞

)
+ 27q2

a(q3)

(q3; q3)i−3
∞

(
(q9; q9)3∞
(q3; q3)∞

)2

,

and thus,
∞∑
n=0

a3nq
3n =

(q3; q3)12−i
∞

(q9; q9)3∞
.

When i > 12, it is clear by Lemma 2.1 that a3n ≥ 1 for any n, and this justifies part (c).
When i = 12, by Lemma 2.1 one can find that a3n = 0 for n ≡ 1, 2 (mod 3) and a3n > 0 for

n ≡ 0 (mod 3), i.e., an = 0 for n ≡ 3, 6 (mod 9) and an > 0 for n ≡ 0 (mod 9). This justifies part
(b).

Finally, when i = 11, first note by Theorem 2.2 that

(q3; q3)∞
(q9; q9)3∞

=
1

(q3, q6, q9, q18, q21, q24, q27; q27)∞|q→q3
× 1

(q9; q9)2∞

− q3
1

(q3, q9, q12, q15, q18, q24, q27; q27)∞|q→q3
× 1

(q9; q9)2∞

− q6
1

(q6, q9, q12, q15, q18, q21, q27; q27)∞|q→q3
× 1

(q9; q9)2∞
.

So once again, by Lemma 2.1, one can find that

an

{
> 0 if n ≡ 0 (mod 9),

< 0 if n ≡ 3, 6 (mod 9).

This completes the proof.
□
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5. Concluding Remarks

In [40] Wang considered powers of the infinite Borwein product, i.e. eta quotients of the form

Gm
t (q) :=

(
(q; q)∞
(qt; qt)∞

)m

=:
∞∑
n=0

c
(m)
t (n)qn,

for positive integers m and t. Note that Gt(q) was previously defined for t = p, p a prime, at (1.2).

For t andm positive integers satisfyingm(t−1) ≤ 24, Wang gave asymptotic formula for c
(m)
t (n),

and give characterizations of the n for which c
(m)
t (n) is positive, negative or zero. It was also shown

that c
(m)
t (n) is ultimately periodic in sign. Wang also conjectured that for any positive integers

t and m, that the sequence of coefficients {c(m)
t (n)}n≥0 is ultimately periodic in sign, with least

period of sign divisible by t. Several cases of this conjecture were proven.
In a subsequent paper we intend to investigate what the methods used in the present paper can

contribute to this conjecture and similar conjectures for the related infinite products(
(qj ; qj)∞
(qt; qt)∞

)m

,
(qj ; qj)m∞
(qt; qt)∞

.

If gcd(t, 6) = 1, then Corollary 2.1 can be used to get the t-dissection of (qj ; qj)∞ and hence of
(qj ; qj)m∞/(q

t; qt)∞ or (qj ; qj)m∞/(q
t; qt)m∞ . Of course any particular term in this t-dissection will in

general not be a single infinite product, and instead will be a sum of infinite products with mixed
signs, and thus, in contrast to the situation in the present paper, not so obvious that coefficients
will ultimately be all of the same sign or ultimately periodic in sign.

As part of a preliminary investigation into this new situation, we looked at the eta quotients
A(q) := (q2; q2)5∞/(q

7; q7)∞ and B(q) := (q3; q3)5∞/(q
7; q7)∞, and counted the number of coefficients

(in the first 50,000) that were negative, zero and positive in each of the arithmetic progressions r
(mod 7), r = 0, 1, . . . 6. These counts are shown in Table 1.

A(q) B(q)

r #− #0 #+ r #− #0 #+
0 0 0 7142 0 0 0 7142
1 7141 1 0 1 7140 2 0
2 3319 504 3319 2 0 1 7141
3 7141 1 0 3 3300 518 3324
4 3285 507 3350 4 3294 525 3323
5 3279 509 3354 5 7141 1 0
6 0 0 7142 6 3292 524 3326

Table 1: Counts of negative, zero and positive coefficients in
the arithmetic progressions 7n + r, 0 ≤ r ≤ 6 in the series
expansion of A(q) and B(q)

It can be seen that while the evidence suggests that coefficients in some arithmetic progressions
are ultimately all of the same sign (r ≡ 0, 1, 3, 6 (mod 7) for A(q) and r ≡ 0, 1, 2, 5 (mod 7) for
B(q)), the situation is more complex for the other arithmetic progression.

In these other arithmetic progressions evidence suggests that positive and negative coefficients
are roughly equinumerous, but that in addition there are large numbers of zero coefficients, roughly
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one fourteenth of the total, so that the distribution of the signs of the coefficients is clearly more
complicated.
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